TRANSLATING SCIENCE INTO TECHNOLOGY AND PRODUCTS: A VIEW FROM CSIR

Dr. S. Sivaram
National Chemical Laboratory,
Pune-411 008, INDIA

Tel : 0091 20 2590 2600
Fax : 0091 20 2590 2601
Email : s.sivaram@ncl.res.in
Visit us at : http://www.ncl-india.org

SAC – C Meeting
New Delhi
September 7, 2010
WORLD CHEMICALS MARKET

A THREE TRILLION $ INDUSTRY

- Petrochemicals: 39%
- Performance chemicals: 17%
- Pharmaceuticals: 16%
- Agrochemicals: 11%
- Inorganic Chemicals: 7%
- Textile: 10%
Chemical industry in India contributes to 3% of its GDP and 14% of its exports.

- Revenues: US $55 billion in 2007-08 and CAGR of 11% (2002-07)
- Projected to grow to US$ 75 billion by 2011
- Indian Chemical industry 12th largest in the world and 3rd largest in Asia

Commodity chemical industry is technologically mature; all innovations are incremental in nature.
CHANGING TOPOGRAPHY OF CHEMICAL INDUSTRY

- Globalization of business
- Shifting manufacturing geographies
- Growing concerns for sustainability
- Changing customer expectations driven by new demographics
- Changing workforce requirements
- Impact of ICT
- Industry consolidation

Unprecedented rise in fuel and raw material costs
High cost of new product introductions; difficulties in identifying new growth platforms
Increasing regulatory (environment, health and safety) frameworks
Faster technology diffusion / commoditization of products leading to quicker price / margin erosion
Supply chain is taxed by breadth of markets, products and geography
Increased global segmentation in terms of technology providers, low cost producers and large domestic markets

Merely building capacities or growth via acquisition without a specific game plan is no longer sufficient for survival
FORCES OF CHANGE IN THE CHEMICAL INDUSTRY

- Chemical industry is a mature industry
- Innovations are largely incremental in nature
- Disruptive innovations are becoming scarcer and fewer
GLOBAL ISSUES

- Difficulties in identifying new growth platforms
- Difficulties in creating value and high entry barriers for new product introductions
- Globalization of economy, reduced barrier to movements of goods services
- Increased global segmentation in terms of technology providers, low cost producers of feed-stocks and large domestic markets
INDIAN CHEMICAL INDUSTRY: CONCERNS

- Branded as low cost supplier/outsourcing/contract manufacturing entity for fine and specialty chemicals
- Innovation deficit; few new product offerings based on proprietary knowledge/IP. Low R&D intensity with the exception of drugs and pharmaceutical sector
- Conventional engineering practices
- Poor application development skills, especially for specialties
- Talent deficit; chemistry and chemical engineering education no longer considered fashionable; serious issues of talent retention/flight

Chemicals and chemical industry is not perceived as sexy as Biotechnology or IT
CHEMICAL INDUSTRY : 2020 TECHNOLOGY VISION

- Reduce feed stocks losses to waste / byproducts by 90%
- Reduce energy intensity of processes by 30%
- Reduce emissions including CO$_2$ and effluents by 30%; move towards zero discharge goals
- Increase use of renewable resources as building block for chemicals; combine judiciously chemical and biological processes to achieve sustainability goals
- Small/ modular chemical plant designs for enhanced safety and reduced quantities of inventory storage
- Increase the conversion of stoichiometric processes to catalytic processes; batch to continuous processes
- Understand better the impact of chemicals and materials on environment, safety and human health
FUTURE CHALLENGES

• Low carbon economy

• Sustainability (GHG, LCA, Carbon and water footprint, energy conservation and efficiency, sustainable energy, impact of human activity on ecology, environment and habitats)

• Distributed manufacturing
 ✓ Process intensification / simplification
 ✓ Smaller footprint
RELATIONSHIP MODELS FOR REALIZING OUTCOMES

• Conversion of knowledge into economic wealth requires partnership with industry or Government

• Innovative models of public / private partnerships need to be experimented with in our laboratories

• In a similar vein there is a need to focus on several societal missions with renewed focus on delivery to the stakeholders where active partnership with “Social Entrepreneurs” could greatly help in diffusing and replicating technologies in different strata’s of society
PARTNERSHIP IS ESSENTIAL FOR S&T TO REACH THE STAKEHOLDERS

Industry or organized enterprise (public –private partnership)

S&T derived knowledge

CSIR

Governmental or non governmental Organizations (public –public Partnerships)

Society
EXISTING TRANSLATIONAL MODELS

- Sponsored / Collaborative /contract research
- Technical service
- Consultancy
- IP licensing
- In-house development of processes and products followed by licensing (with or without IP)
MODELS OF TECHNOLOGY TRANSFER: EXAMPLES FROM NCL

• EPICHLOROHYDRIN
 - Process chemistry developed at NCL and IP generated: IP licensed to ABG; joint development of process technology and validation of process economics with industry; industry invests in commercial development

• VALUE ADDITION TO BIOMASS IN AN INTEGRATED BIOREFINERY
 - Process developed at NCL in a public private partnership model with industry involvement from early stages of project conceptualization; industry invests in technology demonstration and validation

• SOLID CATALYST FOR TRANSESTERIFICATION: BIO-DIESEL
 - Basic chemistry discovered at NCL and IP generated: IP licensed to a start-up company, The start-up company raised finances based on the robustness of NCL IP; Technology validation by the company
Management Expertise

Biodiesel Expertise

Engineering & Catalyst

Strategic Partners

- One of largest catalyst producers in world
- 5,000 person, publically traded company
- Global production capacity

- Market leader for crude oil dewatering using electrostatic separation
- Co-developed novel method for separating biodiesel & glycerin

- One of the world’s largest catalytic research institutes
- Government backed institute with over 200+ PhD’s
- Focus on catalysis since 1980

Ravi Randhava, PhD. – CTO
- Founder of Xytel – 700+ world wide process engineering company
- Focus on solid catalyst technology development
SOME USEFUL LESSONS LEARNT

• Invest in good basic / curiosity driven research leading to IPR / high quality publications
 – Intuition driven
 – New opportunities for generic patent

• Choose products / processes for development where the entry barrier is likely to be low
 – Difficult to license technologies
 – Single technology supplier items
 – Products having large transportation cost
 – Formulated or structured products
NEW INITIATIVES

- Mission mode programmes through public-private partnership (NMITLI - New Millennium Initiative for Technology Leadership for India) (~ 35 projects, 167 public and 55 private sector partners, expenditure Rs ~200 crores)

- Knowledge alliances through public-private partnership; creating jointly owned and managed research entities with industry

- Encouraging knowledge driven entrepreneurship
Technology development & transfer: Newer models

- Problem/Need
- Technology idea
- Key proofs of concept and "do-ability"
- Prototype/demonstration stage
- Rights/trials/approvals
- Commercial production
- Product in use
- Company

Partnerships & new ventures – startups or corporate

IP licensing
NCL Technologies
- IP (Patents)
- Know-how
- Competencies

(IP) Licensing
Consulting Services
Technical Services

Domestic Corporations & MNCs
Technology Commercialization v2.0

- Technologies
 - IP, Know-how
 - Competencies
 - Students, Scientists
 - Lab facilities
 - R&D networks

- NCL (CSIR), NCL Innovations

- Investors
 - Government agencies (MoMSME, DSIR, TDB)
 - Angels & angel networks
 - Venture capitalists

- Venture Center
 - Incubation facilities
 - Seed funding
 - Technology entrepreneurship ecosystem

- Entrepreneurs
 - MSMEs
 - Corporations

- Market needs & opportunities
 - Prototype → Product
 - Business experience
 - Distribution channels
PUBLIC-PRIVATE PARTNERSHIP: CONSORTIUM MODEL

- Areas of common interest to a few companies – access to generic knowledge
- Consortium agreements with service modules
- Project Advisory Boards with company participation
- Benefit sharing and possibility of bilateral projects
- Ownership of IP and proprietary knowledge vests with CSIR
- Rights of first refusal to consortium partners
FACTORS THAT INHIBIT PUBLIC–PRIVATE PARTNERSHIP

• “Gatorade” factor
 - In the quest for windfall financial returns, public institutions demand all encompassing IP rights and subsequent royalty payments from the corporate sector with such vigour that many projects are terminated by the lawyers! Scientists in public organization vastly underestimate the effort needed to move an idea to a new product or service for which there is a commercial demand. This naivety can make negotiations over IPR and royalty issue an exercise in frustration.

• “Give us the money and we will work on something related to your interest”
 - Scientists are usually looking for support for their own ideas, not those of others.
FACTORS THAT INHIBIT PUBLIC–PRIVATE PARTNERSHIP

• “Fund me for three years and I will give you a progress report “
 - Timescales in public institutions are much longer than companies can tolerate; Companies are generally not in business to fund PhD thesis
• “Next quarter bottom line factor”
 - Decreasing investments in medium and long term R&D
• “We can buy any technology that we need”
 - Acquire businesses with technology rather than develop
• “For external research we will not pay overheads”
 - Companies often sulk at paying real overheads to external research groups in spite of the fact that their internal overheads is often more than 100 % of their direct cost
BARRIERS TO KNOWLEDGE DRIVEN INNOVATIONS

- Cultural barriers (knowledge is free, making personal wealth out of knowledge is not right, separating the goddess of knowledge from the goddess of wealth in the Indian pantheon of gods)
- Immaturity of markets and risk averse
- Inability to connect basic discoveries with potential applications
- Weak innovation eco systems (mentoring, venture and angel funds)
- Peer recognition systems heavily biased in terms of abstract academic research; not enough incentives for individuals who wish to translate science into products and services
SOME USEFUL LESSONS LEARNT

- Learn to walk the last mile
- Putting the team together and energizing the team
- Patience, perseverance and failure tolerant
- Who gets the glory and who gets the blame
- The role of a champion; the leader as a champion
- Going beyond the written contract
- Passion to succeed; Are you ready to stake your reputation?

Science is an individual effort; technology is a collective endeavor
WHAT MUST CSIR DO FOR THE INDIAN CHEMICAL INDUSTRY?

- Demonstrate process intensification and application of micro-reactor technologies to the manufacture of fine chemicals. Build modular and reconfigurable continuous chemical plants with low capital cost and high process efficiency.
- Demonstrate technologies to reduce waste, zero effluent discharge, and minimize carbon footprint for chemical manufacturing processes.
- Demonstrate Process Analytical Technologies for in-process quality measurements.
- Assist the chemical industry to shift to more sustainable raw materials and building blocks for the manufacture of chemicals.
- Develop new products and processes to meet the growing global regulatory and environmental pressures, many of which are likely to act as non-tariff barriers to export of products from India.

Can we conceive of a Chemical Technology Park in a PPP mode within CSIR where we can demonstrate the future of chemical manufacturing?
TODAYS SCIENCE SEEDING TOMORROW`S TECHNOLOGIES

• Advanced and functional materials including nanomaterials
• Nano-structured materials and catalysis for energy conversion and storage (electrochemical, solar)
• Novel hybrid materials for harvesting solar energy
• Environmentally friendly polymers
• Biomaterials, tissue engineering and bio-conjugates for therapeutics
• Catalysis, chemical engineering and computational science to leverage clean technologies
• Establishing sustainable and/or renewable feedstocks for chemical manufacturing
• Harnessing modern biology to create a more sustainable chemical industry
• Selective separation processes for a diverse range of applications
SIGNIFICANT OPPORTUNITIES FOR DISRUPTIVE INNOVATION. HOWEVER, TODAY'S CHEMICAL SCIENCE WILL REQUIRE A COMPLETELY DIFFERENT TRANSLATIONAL MODEL TO CONVERT KNOWLEDGE TO WEALTH
THANK YOU